SAFETY ENGINEERING | ELECTRICAL SAFETY | OSH ELECTRICAL | LIVE WIRE | HIGH VOLTAGE | HUMAN SAFETY
POWER SYSTEM PROTECTION COORDINATION BASICS
When an electrical distribution system is designed and constructed, a fault-current coordination study should be conducted, and circuit protective devices should be sized and set according to the results of the study. In time, however, the electrical system configurations are often changed due to the changing needs of the end users.
If the coordination and capability of the electrical equipment are not reviewed at the time of the changes, faults could result in unnecessary tripping of a main breaker or, even worse, an explosion of equipment that was thought to be in good condition.
When system conditions change, the results that were obtained in the original fault-current coordination study may no longer apply to the current system. Unnecessary tripping, known as lack of selectivity, could be caused by poor coordination.
An equipment explosion could result from the interrupting capability of the circuit breaker being exceeded. Both indicate a clear need for an updated fault-current coordination study.
Utility systems delivering higher fault currents
The demand for electricity, particularly in the industrial and commercial environment, has been steadily increasing. Consequently, utility systems have grown much larger and have become capable of delivering much higher fault-currents at service points than in the past.
Therefore, protective devices that were properly applied at the time they were installed may have become inadequate after system changes, and the protective system may no longer be coordinated. When available fault current increases to the point at which it exceeds protective device interrupting and withstand ratings, violent failure is possible, regardless of how well the devices are maintained.
Protection in an electrical distribution system
System and equipment protective devices are a form of insurance. This insurance pays nothing as long as there is no fault or other emergency.
When a fault occurs, however, properly applied protective devices reduce the extent and duration of the interruption, thereby reducing the exposure to personal injury and property damage. If, however, the protective system does not match system needs, just as an insurance policy should keep up with inflation, it is no help at all.
It is the responsibility of the system operator to ensure proper system protection and coordination.
Protective equipment set to sense and remove short circuits
In medium-voltage systems, the protective equipment for feeder conductors is often set to sense and remove short circuits, but not necessarily to provide overload protection of circuits. Device settings sometimes are purposely chosen low enough to sense and provide a degree of overload protection.
Operators should be aware of this so that a protective device that is set lower than necessary for coordination does not cause a false tripping action during system switching procedures. System protection coordination is an important consideration in switching systems with loop feeds and alternate sources.
To avoid false tripping action, operators should be aware of the settings and any probable temporary overloads or circulating currents during switching.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment