Showing posts with label Fire. Show all posts
Showing posts with label Fire. Show all posts

PORTABLE FIRE EXTINGUISHER SAFETY TIPS BASIC INFORMATION AND TUTORIALS

SAFETY TIPS ON THE USE OF PORTABLE FIRE EXTINGUISHERS

Image result for FIRE EXTINGUISHERS

A portable fire extinguisher can save lives and property by putting out a small fire or containing it until the fire department arrives; but portable extinguishers have limitations. Because fire grows and spreads so rapidly, the number one priority for residents is to get out safely.

Safety tips
Use a portable fire extinguisher when the fire is confined to a small area, such as a wastebasket, and is not growing; everyone has exited the building; the fire department has been called or is being called; and the room is not filled with smoke.

To operate a fire extinguisher, remember the word PASS:
 - Pull the pin. Hold the extinguisher with the nozzle pointing away from you,  and release the locking mechanism.
 - Aim low. Point the extinguisher at the base of the fire.
 - Squeeze the lever slowly and evenly.
 - Sweep the nozzle from side-to-side.

For the home, select a multi-purpose extinguisher (can be used on all types of home fires) that is large enough to put out a small fire, but not so heavy as to be difficult to handle.

Choose a fire extinguisher that carries the label of an independent testing laboratory.

Read the instructions that come with the fire extinguisher and become familiar with its parts and operation before a fire breaks out.

Install fire extinguishers close to an exit and keep your back to a clear exit when you use the
device so you can make an easy escape if the fire cannot be controlled. If the room fills with smoke, leave immediately.

Know when to go.
Fire extinguishers are one element of a fire response plan, but the primary element is safe escape. Every household should have a home fire escape plan and working smoke alarms.

TOP 10 HAZARDOUS TASKS IN ELECTRICAL WORKS

Typical hazardous tasks in electrical work

The following tasks are some examples of possible exposure to energized conductors:

a) Measuring, testing, and probing electrical system components;

b) Working near battery banks;

c) Opening electrical equipment enclosure doors or removing covers;

d) Inserting or pulling fuses;

e) Drilling, or otherwise penetrating, earth, walls, or ßoors;

f) Pulling conductors in raceways, cable trays, or enclosures;

g) Lifting leads or applying jumpers in control circuits;

h) Installing or removing temporary grounds;

i) Operating switches or circuit breakers;

j) Working inside electronic and communications equipment enclosures.

SAFETY SWITCHES FOR ELECTRONIC EQUIPMENT BASIC INFORMATION

Fuses are typically installed in safety switches. Separately mounted fused safety switches are typically categorized as general-duty and heavy-duty types.

The general-duty type safety switch is rated at 240 V maximum and is typically used in residential and light commercial and industrial applications. The heavy-duty type safety switch is rated at 600 V maximum and is typically used in commercial and industrial applications.

Safety switches can typically be ordered with neutral assemblies and equipment grounding assemblies. There is currently no listing for safety switches that are to be used specifically with nonlinear loads.

It is recommended that the manufacturer be contacted to determine if oversized neutral assemblies can be installed in safety switches serving nonlinear electronic load equipment without voiding any listing requirements. In addition, the manufacturer should be contacted to determine if an isolated equipment grounding bus can be installed in the safety switch enclosure for those applications that require this grounding configuration.

Whenever fuses are utilized, there is a risk of a single-phasing condition if one fuse on a three phase system blows. Safety switches are generally not stored energy devices, and may not contain auxiliary functions such as undervoltage release or shunt trip attachments that help protect against a single-phasing condition.

This is an important consideration because some three phase electronic load equipment may be susceptible to damage if a single-phase condition persists. Other devices may need to be installed to provide proper single-phasing protection.

Blown fuse indicators
Recommended practice is to use blown fuse indicators for the quick and safe determination of the source of power outage affecting downstream electronic load equipment. Some safety switches and fused circuit breakers contain indicating devices located on the front enclosure that indicate a blown fuse condition. Some fuses contain an indicator light, providing visual indication that a fuse is blown.

Interrupting ratings
Interrupting ratings of new fuses or existing fuses should be evaluated to determine if proper interrupting ratings are applied. Interrupting ratings need to be reevaluated if there are any changes to the power system, such as installing K-factor transformers.

These transformers are typically specified or manufactured with a low impedance (%Z) resulting in a higher available short-circuit current on the secondary. This condition can be a problem especially where low interrupting capacity fuses, such as Class H fuses, are installed (Class H fuses have an interrupting rating of only 10 000 A).

BEST LOCATIONS FOR PANEL BOARDS AND SWITCH BOARDS OF ELECTRONIC EQUIPMENT BASIC TUTORIALS

Where should panel boards be located?

Switchboards and panelboards that support electronic load equipment and related loads should be properly designed and installed. Recommended practice is to use panelboards specifically listed for nonlinear loads if they serve electronic load equipment.

As a minimum, panelboards should be rated for power or lighting applications, and should not be a lighterduty type. Special attention should be given to the location and installation methods used when installing panelboards.

In addition, protective devices shall adequately protect system components, neutral buses should be sized to accommodate increased neutral currents due to harmonic currents from nonlinear electronic load equipment, and equipment ground buses should be sized to accommodate increased numbers of equipment grounding conductors due to the recommended practices of using insulated equipment grounding conductors and dedicated circuits for electronic load equipment.

Surge protective devices may also be installed external to, or internal to, the switchboards or panelboards.

Location
Panelboards that serve electronic load equipment should be placed as near to the electronic load equipment as practicable, and should be bonded to the same ground reference as the electronic load equipment.

Other panelboards located in the same area as the electronic load equipment that serve other loads such as lighting, heating, ventilation, air conditioning, and process cooling equipment should also be bonded to the same ground reference as the electronic load equipment.

Panelboards should be directly mounted to any building steel member in the immediate area of the installation. Isolation of a panelboard from the metallic building structure by an electrically insulating material, as an attempt to prevent flow of high frequency current through the panelboard, is not recommended practice.

The panelboard and metallic building structure, separated by a dielectric material, become capacitively coupled. The capacitive coupling presents a low impedance at high frequency defeating the original purpose.

NFPA 780-1997 requires effective grounding and bonding between objects such as structural building steel and a panelboard located within side-flash distance (approximately 1.8 m (6 ft), horizontally) of each other. Insulation materials, commonly used in an attempt to separate a panelboard from building steel, are rarely capable of withstanding lightningi nduced arcing conditions.

TYPES OF AC GENERATOR ROTORS BASIC INFORMATION AND TUTORIALS

Synchronous AC generators are fitted with one of two different rotor designs depending on their intended rotational speeds.

Round rotors are solid steel cylinders with the field winding inserted in slots milled into the surface or the rotor. They usually have two or four poles. Round rotors can withstand the stresses of high-speed rotation.


Salient-pole rotors have multiple pole pieces (typically six) mounted to the rotor structure, and the field winding is wound around the pole pieces. Because of their more complex construction and larger diameter-to-length ratios, salient-pole rotors cannot withstand the stresses of high-speed rotation.


Electric utility steam-turbine–driven generators designed for 50- or 60-Hz AC output voltage have round rotors with two poles because they can withstand the stresses of speeds of 3000 and 3600 rpm.

Hydroelectric, diesel, and natural-gas engines have far lower shaft speeds than steam turbines, so the generators they drive usually have six or more pole rotors, requirements usually met with more complex salient-pole rotors.

Three-phase AC generators have a winding that is made up of three separate stator windings, each displaced from the other two by 120 electrical degrees. The three windings can either be wye- or delta-connected. The wye connection is more common because it is better suited for direct high-voltage generation.

WORKS REQUIRING PERMITS BASIC INFORMATION AND TUTORIALS

What are the activities/ works that requires work permit?

The main types of permit and the work to be covered by each are identified below. Appendix 6.4 illustrates the essential elements of a permit form with supporting notes on its operation.

General permit
The general permit should be used for work such as:

S alterations to or overhaul of plant or machinery where mechanical, toxic or electrical hazards may arise
S work on or near overhead crane tracks
S work on pipelines with hazardous contents
S work with asbestos-based materials
S work involving ionising radiation
S work at height where there are exceptionally high risks
S excavations to avoid underground services.

Confined space permit
Confined spaces include chambers, tanks (sealed and open-top), vessels, furnaces, ducts, sewers, manholes, pits, flues, excavations, boilers, reactors and ovens.

Many fatal accidents have occurred where inadequate precautions were taken before and during work involving entry into confined spaces. The two main hazards are the potential presence of toxic or other dangerous substances and the absence of adequate oxygen.

In addition, there may be mechanical hazards (entanglement on agitators) and raised temperatures. The work to be carried out may itself be especially hazardous when done in a confined space, for example, cleaning using solvents, cutting/welding work.

Should the person working in a confined space get into difficulties for whatever reason, getting help in and
getting the individual out may prove difficult and dangerous.

Stringent preparation, isolation, air testing and other precautions are therefore essential and experience shows that the use of a confined space entry permit is essential to confirm that all the appropriate precautions
have been taken.

Work on high voltage apparatus (including testing)
Work on high voltage apparatus (over about 600 volts) is potentially high risk. Hazards include:

S possibly fatal electric shock/burns to the people doing the work
S electrical fires/explosions
S consequential danger from disruption of power supply to safety-critical plant and equipment.

In view of the risk, this work must only be done by suitably trained and competent people acting under the terms of a high voltage permit.

Hot work
Hot work is potentially hazardous as a:

S source of ignition in any plant in which highly flammable materials are handled
S cause of fires in all locations, regardless of whether highly flammable materials are present.

Hot work includes cutting, welding, brazing, soldering and any process involving the application of a naked
flame. Drilling and grinding should also be included where a flammable atmosphere is potentially present.

In high risk areas hot work may also involve any equipment or procedure that produces a spark of sufficient energy to ignite highly flammable substances.

Hot work should therefore be done under the terms of a hot work permit, the only exception being where hot work is done in a designated area suitable for the purpose.

ELECTRICAL FIRES AND EXTINGUISHERS

Electricity is one of the most common causes of fires and thermal burns in homes and workplaces. Defective or misused electrical equipment is a major cause of electrical fires.

If there is a small electrical fire, be sure to use only a Class C or multipurpose (ABC) fire extinguisher, or you might make the problem worse. All fire extinguishers are marked with letter(s) that tell you the kinds of fires they can put out. Some extinguishers contain symbols, too.

The letters and symbols are explained below (including suggestions on how to remember them).

A(think: Ashes) = paper, wood, etc.
B(think: Barrel) = flammable liquids
C(think: Circuits) = electrical fires

All fire extinguishers are marked with a letter(s), which identifies the kinds of fires they put out. Sometimes the label is marked with both a letter and symbol. Be sure to read the label and use the appropriate extinguisher.