ANALYSES OF HARMONIC CURRENTS AND VOLTAGE OF ELECTRONIC EQUIPMENT BASIC INFORMATION AND TUTORIALS


Refer to IEEE Std 519-1992 for a general discussion of harmonic currents. Recommended practice is for all power distribution systems intended for use with electronic load equipment comply with IEEE Std 519-1992 and IEEE Std 399-1997 guidelines. Calculation or estimation of load harmonic profiles is a necessary requirement when installing power factor correction equipment, selecting K-factor rated transformers or derating existing conventional transformers.

Improvements in power factor may be desired for financial reasons (to lower utility costs associated with power factor penalties) or operational reasons (to lower system losses, increase system reserve capacity, or improve voltage conditions). Extreme caution should be used when applying capacitors.

The manner in which they are applied can cause resonance conditions that can magnify harmonic levels and cause excessive voltage distortion. Power factor correction equipment may be applied directly at or close to the facility service entrance, or as close as practicable to the load equipment.

The location of the power factor equipment will depend on economic reasons, as well as operational and design considerations.

Thorough analysis of distribution system characteristics and load characteristics should be made prior to applying power factor correction capacitors to determine what effect harmonic currents will have on the system, and to determine proper harmonic mitigation techniques. Refer to IEEE Std 141-1993 for further discussion on application of power factor correction capacitors.

It is recommended practice to measure and record the harmonic profile of load currents at the transformers serving the load. When the harmonic profiles of individual loads at downstream locations are measured, there is a tendency to calculate a higher than necessary K-factor.

This is also the case in new installations where the current harmonic profile is estimated from typical
individual pieces of electronic load equipment based upon experience or data supplied by the OEM. Due to cancellation, the combined contribution to K-factor of several loads is always less than the sum of individual loads.

This reduction may be substantial when there is a large number and a diversity of nonlinear load types. Figure below shows an example of how harmonic levels vary in a typical electrical distribution system. Note that the level of harmonic current distortion decreases from the individual electronic load equipment to the branch circuit panelboards, through delta-wye stepdown transformers, and upstream to the power source.


However, when loads are removed from the electrical distribution system, the cancellation benefit produced by these loads is also removed. In many cases, this will not be a problem for a transformer that is conservatively loaded or is K-factor rated. It may be a problem if the load or K-factor rating is marginal.

Cancellation results when harmonics produced by different loads are phase-shifted relative to each other. Impedance in branch circuit wiring, as well as isolation transformers or series inductors and shunt capacitors that may be incorporated in the loads, shift harmonic currents.

A delta-wye transformer serving single-phase nonlinear loads randomly distributed among the three phases will trap the balanced triplen load harmonics in the primary winding. This may substantially reduce the triplen harmonic currents and the related current and voltage distortion that would otherwise appear on the primary side.

It is difficult to predict a harmonic diversity factor without modeling the nonlinear loads and the electrical distribution system. Computer programs and methods that allow modeling and simulation are becoming available.

With more experience, these computer analysis tools are expected to provide diversity factors for typical loads in industrial and commercial power systems. For new installations, where such diversity factors are not available, recommended practice is to monitor the load current distortion and diversity relative to the load mix in a comparable facility.

No comments:

Post a Comment