SAFETY ENGINEERING | ELECTRICAL SAFETY | OSH ELECTRICAL | LIVE WIRE | HIGH VOLTAGE | HUMAN SAFETY
BIOLOGICAL EFFECTS OF IONIZING RADIATION BASIC INFORMATION AND TUTORIALS
IONIZING RADIATION IMPACT TO BODY
What Are The Biological Effects of Ionizing Radiation?
Information on the biological effects of ionizing radiation comes from animal experiments and from studies of groups of people exposed to relatively high levels of radiation. The best-known groups are the workers in the luminising industry early this century who used to point their brushes with the lips and so ingest radioactivity; the survivors of the atomic bombs dropped on Japan, and patients who have undergone radiotherapy.
Evidence of biological effects is also available from studies of certain miners who inhaled elevated levels of the natural radioactive gas radon and its radioactive decay products. The basic unit of tissue is the cell. Each cell has a nucleus, which may be regarded as its control centre.
Deoxyribonucleic acid (DNA) is the essential component of the cell’s genetic information and makes up the chromosomes which are contained in the nucleus. Although the ways in which radiation damages cells are not fully understood, many involve changes to DNA.
There are two main modes of action. A DNA molecule may become ionised, resulting directly in chemical change, or it may be chemically altered by reaction with agents produced as a result of the ionisation of other cell constituents. The chemical change may ultimately mean that the cell is prevented from further division and can therefore be regarded as dead.
Very high doses of radiation can kill large numbers of cells. If the whole body is exposed, death may occur within a matter of weeks: an instantaneous absorbed dose of 5 gray or more would probably be lethal (the unit gray is defined below).
If a small area of the body is briefly exposed to a very high dose, death may not occur, but there may be other early effects: an instantaneous absorbed dose of 5 gray or more to the skin would probably cause erythema (reddening) in a week or so, and a similar dose to the testes or ovaries might cause sterility.
If the same doses are received in a protracted fashion, there may be no early signs of injury. The effect of very high doses of radiation delivered acutely is used in radiotherapy to destroy malignant tissue. Effects of radiation that only occur above certain levels (i.e. thresholds) are known as deterministic. Above these thresholds, the severity of harm increases with dose.
Low doses or high doses received in a protracted fashion may lead to damage at a later stage. With reproductive cells, the harm is expressed in the irradiated person’s offspring (genetic defects), and may vary from unobservable through mildly detrimental to severely disabling.
So far, however, no genetic defects directly attributable to radiation exposure have been unequivocally observed in human beings. Cancer induction may result from the exposure of a number of different types of a cell. There is always a delay of some years, or even decades, between irradiation and the appearance of a cancer.
It is assumed that within the range of exposure conditions usually encountered in radiation work, the risks of cancer and hereditary damage increase in direct proportion to the radiation dose. It is also assumed that there is no exposure level that is entirely without risk.
Thus, for example, the mortality risk factor for all cancers from uniform radiation of the whole body is now estimated to be 1 in 25 per sievert (see below for definition) for a working population, aged 20 to 64 years, averaged over both sexes5. In scientific notation, this is given as 4 10 2 per sievert.
Effects of radiation, primarily cancer induction, for which there is probably no threshold and the risk is proportional to dose are known as stochastic, meaning ‘of a random or statistical nature’.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment